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How we did this: weighted majority voting
Chen, Nikolov, and Shah. A Latent Source Model for Nonparametric Time Series Classification. 

NIPS 2013.
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Weighted Majority Voting

0.80.10.5

Training data

Red = viral
Blue = not viral

Test data
Election results 
Viral: 1.3 votes 
Not viral: 0.1 votes

Compute similarities

Nearest neighbor

Election results 
Viral: 0.8 votes 
Not viral: 0.0 votes

Nearest Neighbor Classification
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NN Classification Variants
• k-NN classification: consider k most similar training data 

to test data point

• Unweighted: when tallying up votes, have each of the k 
nearest neighbors have an equal vote of 1 
(usually k-NN classification refers to unweighted case)

• Weighted: when tallying up votes, use the similarities 
that we computed

• Fixed-radius near neighbor classification: consider all 
training data at least some similarity threshold close to test 
data point (i.e., use all training data distance ≤ h away)
• Once again, can use weighted or unweighted votes



Regression: Each label is 
continuous instead of discrete
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Kernel Regression

0.80.10.5

Training data

Test data

Compute similarities

Label: -1Label: 3 Label: 4

Predicted label:
(3)(0.5) + (−1)(0.1) + (4)(0.8)

0.5 + 0.1 + 0.8

Weighted average instead of weighted majority vote
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NN Regression

0.80.10.5

Training data

Test data

Compute similarities

Label: -1Label: 3 Label: 4

Predicted label: 4

Nearest neighbor
Just like classification: k-NN and fixed-radius NN variants, 

also weighted and unweighted



“Adaptive” nearest neighbors: 
learn the similarity function
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Example Made-Up Data

Age (years)

Weight (lb)

4030 5020

100

200

300

Red: diabetic 
Blue: not diabetic



Example Decision Tree

Age > 40?

Weight > 200?Age > 30?

no yes

no yes no yes

diabeticnot 
diabetic

diabeticnot 
diabetic
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Learning a Decision Tree

• Many ways: general approach actually looks a lot like 
divisive clustering but accounts for label information

• I’ll show one way (that nobody actually uses in practice) but 
it’s easy to explain
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Decision Tree Learned
Weight > 210?

Age > 35?Weight > 145?

no

not 
diabetic

Age > 39?

Age > 29?

yes

no yes

not 
diabetic

no yes

not diabetic
no yes

diabetic

Weight > 210?

Age > 35?Weight > 145?

Age > 39?

Age > 29?

For a new person with feature vector (age, weight), easy to predict!

diabeticnot 
diabetic

no yes

Leaf cells in the 
feature space 
correspond to 
leaves of the 
decision tree!
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Nearest Neighbor Interpretation

Age (years)

Weight (lb)

4030 5020

100
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300

Red: diabetic 
Blue: not diabetic

Also: Any test data point lands in one leaf cell
Test point

9 nearest 
neighbors

Note: Each training data point lands in one “leaf cell”

Prediction for test point: majority vote of training points in same leaf cell 
(these training points act as nearest neighbors to the test point!)

Similarity to points in same leaf cell: 1/(# training points in leaf cell) 
Similarity to points in other leaf cells: 0

Weighted majority voting using this definition of similarity precisely 
gives the prediction for this particular decision tree!

Election results 
Diabetic: 8/9 votes (winner) 
Not diabetic: 1/9 votes
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Regression

average
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• Typically, a decision tree is learned with randomness 
(e.g., we randomly chose which feature to threshold)
➔ by re-running the same learning procedure, we can get 

different decision trees that make different predictions!
• For a more stable prediction, use many decision trees

This is not the only way to aggregate predictions!
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average 
label for  
tree 1

Nearest neighbor interpretation: 
For a specific test data point x and training data point xi

similarity(x , xi ) =
1
T

T∑

t=1

similarityt (x , xi )

similarity function for t-th tree
makes overall similarity 

between 0 and 1

average 
label for  
tree 2

average 
label for 
tree 3

average 
label for 
tree T

Average these values to get final prediction

Regression
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Tree 1 Tree 2 Tree T…Tree 3

Combine values to get final prediction
Question: What happens if all the trees are the same?

Adding randomness can make trees more different!
• Random Forest: in addition to randomly choosing features 

to threshold, also randomize training data used for each tree
• Extremely randomized trees: further randomize thresholds 

rather than trying to pick clever thresholds

Randomly sample 
(with replacement) 

n points
n training 

data 
points

Randomizing training data 
this way is called bagging 

(bootstrap aggregating)
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Boosting: learn trees sequentially, and learn 
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Boosting: weight trees unequally so bad 
trees are down-weighted
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1 , ŷ (T )

2 , . . . , ŷ (T )
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1 , ŷ (2)
2 , . . . , ŷ (2)
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n

y1, y2, . . . , yn y1, y2, . . . , yn y1, y2, . . . , yn

Learn trees sequentially accounting for mistakes made previously

Adjust for how much each tree’s votes count

similarity(x , xi ) =
T�

t=1

�tsimilarityt (x , xi )

weight for tree t



Boosting

Tree 1

Training data:

Predicted:
Actual:

Tree 2

w (1)
1 , w (1)

2 , . . . , w (1)
n

x1, x2, . . . , xn

w (2)
1 , w (2)

2 , . . . , w (2)
n

x1, x2, . . . , xn

Weights: w (T )
1 , w (T )

2 , . . . , w (T )
n

x1, x2, . . . , xn

Tree T…
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1 , ŷ (2)
2 , . . . , ŷ (2)
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Different ways to choose 
weights yield different 

boosting methods 
(e.g., AdaBoost, gradient 

tree boosting)Still an adaptive NN method!


